Elucidating the immune active state of HR+HER2-MammaPrint High 2 early breast cancer

Erin Frances Cobain¹, Lajos Pusztai², Cathy Lynne Graham³, Pat W. Whitworth⁴, Peter D. Beitsch⁵, Cynthia R. C. Osborne⁶, Rakhshanda Layeequr Rahman⁷, Nathalie M. Johnson⁸, Adam Brufsky⁹, Reshma L. Mahtani¹⁰, VK Gadi¹¹, Kent Hoskins¹¹, Hannah M. Linden¹², Rita A. Mukhtar¹³, Laura Esserman¹⁴, Josien Haan¹⁵, Katie Quinn¹⁶, Andrea Menicucci¹⁶, William Audeh¹⁶, Joyce O'Shaughnessy¹⁷, **FLEX Investigators Group**

¹University of Michigan, Ann Arbor, MI; ²Yale Cancer Center, Yale School of Medicine, New Haven, CT; ³Emory University School of Medicine, Atlanta, GA; ⁴Nashville Breast Center, Nashville, TN; ⁵Dallas Surgical Group, Dallas, TX; ⁶Texas Oncology-Baylor Charles A. Sammons Cancer Center, The US Oncology Network, Dallas, TX; ⁷Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX; ⁸Legacy Health System, Portland, OR; ⁹University of Pittsburgh, Pittsburgh, PA; ¹⁰Miami Cancer Institute, Baptist Health South Florida, Miami, FL; ¹¹University of Illinois Chicago, IL; ¹²University of Washington, Fred Hutchison Cancer Research Center, Seattle, WA; ¹³University of California, San Francisco, San Francisco, CA; ¹⁵Agendia, Amsterdam, Netherlands; ¹⁶Medical Affairs, Agendia Inc., Irvine, CA; ¹⁷Baylor University Medical Center, Texas Oncology, The US Oncology Network, Dallas, TX

Key Takeaway Points/Conclusions:

- MammaPrint H2 tumors exhibit a heightened immune active state compared to MammaPrint H1 tumors among hormone receptor positive (HR+), HER2-negative (HER2-) early-stage breast cancers
- The presence of immune cells and upregulation of genes involved in antigen presentation, which are critical in eliciting T- and B-cell activation, may explain improved response rates to immunotherapy observed in MammaPrint H2 tumors
- Selecting patients with HR+ HER2- early-stage breast cancer for immunotherapy treatment based on grade or percent estrogen receptor positivity (ER%) alone may exclude patients likely to benefit. Conversely, patients with high grade tumors that are not MammaPrint H2 may be at risk of toxicities associated with overtreatment
- These data support the ongoing SWOG2206 clinical trial in evaluating the impact of neoadjuvant chemo-immunotherapy on rates of pathologic complete response and invasive disease-free survival in HR+ HER2- early-stage breast cancer with MammaPrint H2 tumors

Neoadjuvant immunotherapy in HR+HER2- breast cancer

- Patients with clinically and genomically high-risk HR+HER2- breast cancer continue to have 20% recurrence risk despite current adjuvant therapies (i.e., chemotherapy [CT], CDK4/6i)
- The addition of immune checkpoint inhibitors to neoadjuvant CT in HR+HER2breast cancer has been evaluated in Phase III clinical trials (CheckMate-7FL and KEYNOTE-756)
 - These trials used clinical stage, tumor grade (grade 3), or ER% (≤ 10%) to select patients with high risk for recurrence for treatment on study
- Genomic classifiers predicting recurrence risk, such as MammaPrint[®] 70-gene signature, may offer enhanced precision in identifying HR+HER2- breast cancer patients who benefit from chemotherapy and immune checkpoint therapy

References: Loi et al. Ann Oncol 2023; Cardoso et al. Ann Oncol 2023

70-gene MammaPrint test: Implications for ET and CT Decisions

MammaPrint (MP) classifies patients with HR+HER2- early breast cancer as having an Ultra Low, Low, High 1, or High 2 Risk of distant recurrence

References: Knauer (Breast Cancer Res Treat 2010), NBRST (Whitworth, Ann Surg Oncol 2022), STO-3 (van't Veer, Breast Cancer Res Treat, 2017, Esserman, JAMA Onc 2017), I-SPY2 (https://www.ispytrials.org/i-spy-platform/ispy2; Pusztai, Cancer Cell 2021), MINDACT (Piccart, Lancet Oncol, 2021; Lopes Cardozo, JCO, 2022), NSABP-B42 (Rastogi, ASCO 2021), IDEAL (Liefers, SABCS 2022)

100-

95-

90-

85

80

probability (%)

RFS

3-yr

MammaPrint High 2 and neoadjuvant immunotherapy

• I-SPY2 trials demonstrated improved pCR when immune checkpoint inhibitors were included with neoadjuvant chemotherapy (nCT) in MP High 2, HR+HER2- tumors

Immunotherapy (IO) arm	pCR% in control (nCT) and IO					
	High 1			High 2		
	Control	IO	Δ	Control	IO	Δ
Pembrolizumab	13%	18%	5%	21%	61%	40%
Pembrolizumab + SD-101	10%	17%	7%	21%	45%	24%
Durvalumab + Olaparib	9%	10%	1%	22%	66%	44%

• The currently enrolling phase III randomized trial SWOG S2206 (NCT06058377) assigns patients with ER+HER2-, MP High 2 breast cancer to durvalumab + nCT vs nCT alone

Reference: Nanda et al., JAMA Oncol, 2020; Wolf et al., Cancer Res, 2022; Pusztai et al., Cancer Cell 2021

Study Objective

Characterize the underlying biology that mediates immune therapy response in HR+HER2- early breast cancers classified as MammaPrint High 2, an immunotherapy biomarker in SWOG 2206, using the FLEX Study

- Characterize clinicopathologic features associated with MammaPrint High 2
- Evaluate gene expression levels to define immune biology in High 2 (BluePrint Luminal and Basal subtypes) vs High 1 tumors
 - Innate and adaptive immunity cell types
 - Antigen processing and presentation pathway
 - Immune checkpoint PD-1 and PD-L1 expression

FLE Study Overview

- FLEX (NCT03053193) is a prospective real world evidence study designed to support investigator-initiated breast cancer research through the curation of paired full transcriptome and clinical data.
- Enrolls stage I-III breast cancer patients who receive standard of care MammaPrint

Methods

- Patients: 2916 patients from FLEX with MammaPrint High Risk, HR+HER2- early breast cancer
- Molecular Classification:
 - MammaPrint High Risk tumors stratified into High 1 (Index 0.00 to -0.569) or High 2 (Index -0.570 to -1.00)
 - 80-gene molecular subtyping signature, BluePrint, further classified High Risk tumors as Luminal-Type or Basal-Type
- Immune characterization of High 2 relative to High 1
 - Immune Cell abundances were defined by the gene-signature based method, xCell, and differences were determined by t-test (adjusted p-value <0.05)
 - Gene expression of the KEGG pathway genes "antigen processing and presentation" and the expression of PD-1 and PD-L1 between High Risk groups was determined by use of the R package Limma

References: Aran et al., Genome Biology 2017; Ritchie et al., Nucleic Acids Research 2015.

Clinical Characteristics

- 79% of tumors were MP High 1
- 21% of tumors were MP High 2
- Patients with MP High 2 tumors more likely to be younger compared to High 1
- MP High 2 more likely to be grade 3
 - 30% of MP High 2 were Grade 1-2
 - 53% of all Grade 3 were MP High 1
- MP High 2 tumors more likely to have low ER staining
 - 83% of High 2 tumors had ER% >10%

Characteristic, n (%)* *unknown excluded	MP High1 (n=2292)	MP High2 (n=624)	P-value	
Age		x <i>x</i>	_	
≤ 50 vrs	537 (23.6%)	198 (31.9%)	<0.001	
> 50 yrs	1739 (76.4%)	423 (68.1%)		
Menopausal Status				
Pre-/Peri-	475 (22.0%)	170 (29.2%)	- <0.001	
Post-	1689 (78.1%)	412 (70.8%)		
Race				
White	1778 (82.4%)	404 (69.9%)	-	
Black	229 (10.6%)	112 (19.4%)		
Latin American	72 (3.3%)	34 (5.9%)	<0.001	
AAPI	67 (3.1%)	25 (4.3%)		
Other	12 (0.6%)	3 (0.5%)		
T Stage				
T1	943 (62.3%)	199 (45.2%)	- - <0.001 -	
T2	493 (32.6%)	199 (45.2%)		
Т3	55 (3.6%)	27 (6.1%)		
T4	22 (1.5%)	15 (3.4%)		
N Stage				
Node Negative	1156 (80.4%)	313 (74.2%)	- 0.021	
Node Positive	282 (19.6%)	109 (25.8%)		
Grade				
G1	361 (16.4%)	10 (1.6%)	<0.001	
62	1340 (01.1%)	103 (20.7%)		
63	495 (22.5%)	437 (71.0%)		
ER% Staining				
1-10%	25 (1.1%)	95 (10.8%)	<0.001	
>10%	2213 (98.9%)	470 (83.2%)		
BP Molecular Subtype				
Luminal B	2269 (99.0%)	348 (55.8%)	- <0.001	
Basal	23 (1.0%)	276 (44.2%)		

PRESENTED BY: Erin Frances Cobain, MD, University of Michigan, Ann Arbor, MI

MammaPrint High 2 tumors have increased innate immunity

- MP High 2 tumors had significantly higher abundance of antigen presenting cells (APCs) compared to MP High 1 tumors:
 - M1 macrophages
 - Activated Dendritic Cells
- Compared to MP High 1, MP High 2 tumors had:
 - Higher abundance of NK cells
 - Significantly lower abundance of neutrophils

Upregulation of antigen presentation and processing in MammaPrint High 2 vs High 1

- KEGG Pathway: Antigen Presentation and Processing.
- Genes involved in MHC I pathway and MHC II pathway were upregulated (red) in MP High 2 tumors compared to MP High 1 tumors

Upregulation of PD-1 and PD-L1 expression in MP High 2

 MP High 2 tumors had significantly higher expression of PD1 and PD-L1 compared to MP High 1 tumors

MammaPrint High 2 tumors have increased adaptive immunity

- Compared to MP High 1, MP High 2 tumors had significantly higher frequency of:
 - CD4+ T and Memory cells
 - CD8+ T and Memory cells
 - B cells, memory B cells and antibody producing plasma cells
- Increased lymphocytes were observed in both MP High 2 Luminal and Basal tumors

****p<0.0001; **p<0.01; *p<0.05

Conclusions:

- MammaPrint H2 tumors exhibit a heightened immune active state compared to MammaPrint H1 tumors among hormone receptor positive (HR+), HER2-negative (HER2-) early-stage breast cancers
- The presence of immune cells and upregulation of genes involved in antigen presentation, which are critical in eliciting T- and B-cell activation, may explain improved response rates to immunotherapy observed in MammaPrint H2 tumors
- Selecting patients with HR+ HER2- early-stage breast cancer for immunotherapy treatment based on grade or percent estrogen receptor positivity (ER%) alone may exclude patients likely to benefit. Conversely, patients with high grade tumors that are not MammaPrint H2 may be at risk of toxicities associated with overtreatment
- These data support the ongoing SWOG2206 clinical trial in evaluating the impact of neoadjuvant chemo-immunotherapy on rates of pathologic complete response and invasive disease-free survival in HR+ HER2- early-stage breast cancer with MammaPrint H2 tumors

Acknowledgements

- We would like to thank the >16,000 patients enrolled in FLEX that make these data possible
- FLEX study site investigators, coordinators, research nurses and personnel

FLEX Trial Information

- MammaPrint, BluePrint, and Full-genome Data Linked With Clinical Data to Evaluate New Gene EXpression Profiles (FLEX) (NCT03053193)
- Agendia, Inc.